

DEPLOYING PROGRESS IN A SECURE ENVIRONMENT

Paul Koufalis
Senior DBA

White Star Software

December, 2015 Page 2 of 20

CONTENTS

INTRODUCTION .. 4

OBJECTIVES AND GOALS ... 4

AUDIENCE ... 4

UNDERSTANDING THE LAYERS ... 5

DATA ... 6

DATABASE ... 8

Security Administrator .. 8

Admin – Security – Disable Blank User-ID ... 9

Admin – DB Options – Disable Blank User-ID ... 9

Usernames and Passwords .. 10

Solutions ... 10

ENVIRONMENT .. 12

Development Environment .. 12

Development Licenses .. 12

DBAUTHKEY .. 12

PROPATH .. 13

AppServer ... 13

$DLC .. 13

Starting Server Processes.. 14

Shell Access .. 14

Solutions ... 15

FILESYSTEM .. 16

The SetUID Bit .. 16

Securing the Database .. 16

Solutions ... 17

SERVER ... 18

Solutions ... 18

NETWORK ... 19

Solutions ... 19

USERS ... 20

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 3 of 20

DISCLAIMER

While the information in this document is thought to be accurate, it is provided on an “as is”
basis and without warranty of any kind, either express or implied. White Star Software, LLC,
its agents, employees or contractors will not be liable to you for any loss or damages of any
nature arising out of your use of information provided in this document.

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 4 of 20

INTRODUCTION
Over the past few years, security has become the new hot topic in the I.T. industry.
Whereas in the past many companies simply trusted their employees and expected
they would “do the right thing”, recent troubles (Enron, WorldCom) have proven this
to be a naïve point-of-view. In today’s world a company must take proactive
measures to ensure the safety and security of their second most important asset:
their data.

Once this decision to proactively protect data is taken, the first thing one must
understand and accept is that no security system can be 100% reliable because
somehow, authorized users must be able to access the data. For every lock, there
must be a key; and if there is a key, someone will figure out a way to pick the lock.
This is a fact we simply must accept. The situation can get even more complicated:
as the end user, you may face resistance from the application partner if you attempt
to secure your environment in a way that is outside their currently supported
deployment methodology. As an application vendor, you may face apathy and lack of
interest from your client base: They simply want the fastest, easiest and cheapest
implementation possible!

As a direct result of these limitations, our real objective is to find that acceptable
sweet spot somewhere between 0% secure and 99.99% secure. One of the best
ways to achieve this objective is to layer your security: In the same way that
multiple layers of clothing keep you warmer than one thick garment, multiple layers
of security provide a more challenging environment to would-be data thieves. This
white paper will examine the various layers surrounding your data and discuss
methods to secure each of these layers.

OBJECTIVES AND GOALS
The primary objective of this white paper is to open the reader’s eyes to security
issues they never even knew existed. Second, and almost of equal importance, this
paper hopes to provide the reader with simple and easy-to-implement solutions for
securing the various layers surrounding their OpenEdge data. The goal is for you to
use the information in this document to build a comprehensive list of possible security
issues and with this list, intelligently decide whether the potential breaches are below
or above your current risk tolerance. If they are below, you ignore them…for now. If
they are above, you can initiate an action plan to eliminate the breaches in question.

AUDIENCE
While the proposed technical solutions are mostly intended for database
administrators (DBA) or system administrators, the discussions regarding the
potential breaches at each layer should be of interest to both middle and upper
management. By understanding the problems, management can better understand
the motivation driving the I.T. department’s proposed solutions.

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 5 of 20

UNDERSTANDING THE LAYERS
In order to fully understand the concept of layered security, consider the medieval
castle:

If the King could afford a large number of walls and moats surrounding the interior,
he and his subjects were all the more safe. But people still needed the ability to
easily leave the castle to work in the fields: hence gates were installed in the walls
and drawbridges over the moats. Consider the various layers surrounding your data
as walls and the access paths as gates. The walls need to be strong enough to resist
attacks and the gatekeepers need to be intelligent enough to detect and deny access
to enemy spies.

An OpenEdge Database environment is very similar to a castle. Walls are built around
the data to protect it from unauthorized access and gates are installed in these walls
to allow authorized users to freely interact with the data. In OpenEdge, the basic
layers are:

 The data itself

 The database containing the data

 The environment surrounding the database and user

 The filesystem containing the database files

 The server hosting the filesystem

 The network to which the server is attached

 The users who have access to the network

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 6 of 20

DATA
At the very heart of the castle is the prize itself: the data. Ideally, the first layer of
security around the data should be the strongest as it must not only resist attacks
from the outside but also from those who are within close proximity.

By default, OpenEdge provides security via certain fields in the _FILE, _FIELD and
_INDEX metaschema tables. These fields are collectively known as the _CAN* fields
as their names are of the form _CAN-READ, _CAN-WRITE, _CAN-CREATE, etc…
These fields have existed since the early versions of Progress1 and are assigned the
default value “*” meaning full access to all. What does this mean? Every Progress
database whose security fields have not been modified is 100% open to reads, writes,
creates and deletes from any ABL client who successfully connects to the database.
Note that I did not say authenticate but rather connect. The existence and/or use of
usernames and passwords are not pertinent when the default security parameters are
left unchanged. Under these default parameters, literally all database connection
requests are granted and all these connected processes have unfettered access to the
data.

Data access control is handled differently when an SQL connection is made. As of
Progress version 9, a native SQL engine has been added and with it SQL-compliant
security. In the SQL model, users are mandatory and database objects belong to the
user who created them. In other words, only the object creator can read, modify,
create or delete data within the object. For any other user to access the data, the
owner or DBA must specifically GRANT access to that user.

Comparing the two security models, it is fairly clear that they are complete opposites:
the OpenEdge default security model is “GRANT * TO * (PUBLIC)”: the default user-id
is “PUBLIC” and that user is granted all privileges. In SQL terms, default OpenEdge
security is equivalent to executing the command “GRANT ALL ON object TO PUBLIC”
for every data object in the database. Conversely, the SQL model is “GRANT Ø TO Ø
(NOBODY)”: the default user is “NOBODY” and that user is granted no privileges.

The DBA’s tasks are similarly opposite when it comes to managing OpenEdge and SQL
security. On the OpenEdge side, access is already set to “PUBLIC” so the DBA must
modify the _CAN* fields to limit users’ capacities to modify data. This is done by
replacing the PUBLIC token “*” by specific usernames and/or wildcards. For example,
“FIN*” means all user-ids that begin with “FIN” are allowed the _CAN* permission in
question. Additionally, access can be specifically denied via the “!” token, either
alone, signifying that the “BLANK” user-id is denied access, or in a wildcard
expression such as “!FIN*”, meaning that all user-ids starting with “FIN” are
specifically denied the _CAN* access. In SQL, we explicitly execute GRANT
statements of the form “GRANT privilege ON object TO user-id.” For example,
“GRANT SELECT ON PUB.CUSTOMER TO KOUP” permits the user authenticated as
“KOUP” to select data from the table CUSTOMER in the PUB schema.

Another very important fact regarding OpenEdge security is that until 10.1A, _CAN*
limitations were only applied at compile time. A user compiling a procedure that

1 The author valiantly attempted to find the exact version in which these features
were introduced but 20+ years and many architects and developers later, that
information seems to have been lost to the ether…

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 7 of 20

modified the CUSTOMER table was required to have _CAN-WRITE access to that table.
However, once the dot-r object code was generated, any user could run that dot-r
and successfully modify the CUSTOMER table in total disregard to the _CAN* fields.
To illustrate the potential magnitude of this feature, imagine a crafty developer who
does not normally have access to production data. _CAN* security will prevent him
from running ad-hoc queries as his queries will not compile. However, this same
developer can compile his query against the development database to which he
presumably has full access, generate a dot-r, and then successfully run the dot-r
against the production DB.

To neutralize this security hole, Progress developed the DBAUTHKEY function: this
function writes a unique DB id to the dot-r allowing it only to be run against a specific
database. In other words, dot-r’s compiled against the development database could
not be executed while connected to the production database. Unfortunately, like so
many other attempts to secure data, an intelligent hacker found a way to circumvent
DBAUTHKEY security. Today, like the alarm on your car, DBAUTHKEY is a sufficient
deterrent against unsophisticated attacks but is useless against an intelligent and
determined assailant. Nonetheless, there is value in the use of the DBAUTHKEY
functionality: it is extremely easy to implement and relatively tricky to circumvent. In
combination with other solutions detailed in this paper, it increases the workload and
complexity required to compromise your system.

The real solution to the _CAN* issue was made available in OpenEdge 10.1A: the DBA
has the ability to force run-time validation of the _CAN* fields via the option “Enable
run-time security”. With this option enabled, every attempted ABL access to the
database is validated at the time of the access, regardless of the source of the query
(ad-hoc, dot-r or dynamically-generated).

Now that DBA’s have the ability to validate access at run-time, there remains the
enormous task of deciding which users have access to which tables. It is relatively
easy to say “User x has access to Sales Order Entry”. What is more difficult is to
extrapolate that functional access to database access. Which tables and fields does
Sales Order Entry access? Does it need to read them? Modify them? Create?
Delete? What if Sales Order Entry calls other programs that update inventory,
shipments, work orders or scheduling? The user must be given access to these tables
as well…but only within the strict confines of the Sales Order Entry. In other words,
the user can change available inventory levels by confirming the order but cannot go
into Inventory Maintenance and manually play with inventory levels!

Stop and think for a minute: we have almost come around full circle! Originally,
security was controlled only via the application. This was judged to be insufficient
because of the many ways the data could be accessed outside the confines of the
application. As a result, run-time security was implemented to control data access
regardless of the source. However, the application may require that the user be
given more liberal access to the data to support functional requirements. Indirect
access to certain objects must be allowed because of the application whereas direct
access to those objects must be barred! How do we handle this? Simple, we grant
access at this layer of security and more tightly secure outer layers, effectively
limiting the channels through which the user can access the data! Before I discuss
exactly how, we must explore the next layer: the database.

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 8 of 20

DATABASE
There are only a few ways to access an OpenEdge database:

- Local shared memory connection

- ABL client-server connection

- SQL client-server connection

- Unified Broker (AppServer Agent, Webspeed Agent) connection

The first two have existed since version 6? 5? I don’t even know! SQL and
AppServer access, on the other hand, are relatively new.

To secure these access paths, OpenEdge has traditionally relied on one gatekeeper:
the username/password2. Stored in the _USER metaschema table, these couplets are
uniquely responsible for controlling access to data objects via the _CAN* fields
discussed in the previous section. The current implementation of _USER has not
changed significantly over the past several versions of Progress/OpenEdge. Within
the database engine itself, there is no mechanism for ensuring complex passwords
nor for enforcing password aging and these functions must be provided by your ABL
application. Very simply, the _USER table contains amongst its numerous fields one
for the username and another where it stores an encrypted version of the user’s
password.

To harden data access security, OpenEdge provides three additional security
functions:

- The security administrator role

- Admin – Security – Disable Blank User-ID Access

- Admin – DB Options – Disable Blank User-ID

Security Administrator
Very simply, the security administrator is the only valid _USER account that can
modify metaschema tables like _FILE, _FIELD, _INDEX and _USER. At the
implementation level, when a valid user-id is assigned the role of security
administrator via the Database Administration menus, that user-id is entered in the
appropriate metaschema tables _CAN* fields. Note however that the OpenEdge
“Security Administrator” is just a normal user like any other. The only difference is
that his user-id was added to the _CAN* fields of the metaschema tables. Similarly,
there is no special meaning attached to an OpenEdge DBA. In the SQL world, the
DBA is a specific user role with special permissions to access the database. In

2 As of 10.1A, new methods for validating users have become available. Discussion of
these new methods warrants a whitepaper of its own and will be considered outside
the scope of this paper.

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 9 of 20

OpenEdge, it is simply a title assigned to a person. The database itself has no
functionality that recognizes a distinct “DBA” role.

Note that the _CAN* fields themselves are fields that have entries in the _FIELD table
and as such have _CAN* fields controlling access to them. Only the security
administrators can modify the _CAN* fields.

The same is true for _USER. Only security administrators can modify fields in _USER.
One exception: Even though the _PASSWORD field of _USER has _CAN* attributes,
these are ignored by the database engine. Only the user himself can modify his
password. To get around this, the security administrator must actually delete and
recreate the _USER record.

Finally, while this may seem obvious, always assign more than one user to the role of
security administrator.

Admin – Security – Disable Blank User-ID
This option was introduced at the same time as the _CAN* fields and simply inserts a
“!” character at the beginning of each of these metaschema fields. What this means
is that at compile-time, or run-time if run-time security is enabled, any user who is
connected to the database but has not been assigned a valid username cannot access
any data.

One of the caveats of this option is that it is not dynamic: If a new table or field is
created after enabling this option, it will not automatically inherit the “!” in its _CAN*
fields. The DBA must manage this himself. Alternately, the “Disable Blank User-ID”
option can be re-executed every time new tables or fields are added.

Admin – DB Options – Disable Blank User-ID
Very simply, this new option available as of OpenEdge 10.0A prevents a user from
connecting to a database without providing proper username/password credentials.
Note the difference between this option and the previous: The first allows database
connection but no data access; the second simply refuses the connection. This option
permits a very secure database environment. The user cannot connect with a blank
user-id and then probe around for unsecured data. The connection attempt will
simply be cut and no access whatsoever will be granted.

From a programming point-of-view, this makes the traditional application
username/password maintenance screen more complicated. If the connection to the
database is made via client-server, the programmer can temporarily store the
username and password in memory and use the values to initiate a database
connection. In other words, no databases were connected upon startup. In a
properly secured shared-memory connection environment this is impossible as the
user will not be able to connect to the database’s shared memory segments after the
initial _progres executable startup.

One solution to this issue is to provide a middle ground between the two “Disable
Blank User-id” functions. A generic login account can be created but that account
must have absolutely no table access! It is up to the DBA to ensure that this
limitation is maintained across the lifespan of the database. Once the connection is

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 10 of 20

made, the login program can use the SETUSERID() function to change the user’s
identity to his real identity.

Of course, as with many solutions, there are minor problems: In order to validate the
user’s password via the SETUSERID() function, the generic login account must have
read access to the _USER table. As a result, an unauthorized user could potentially
download the usernames and encrypted passwords, run a hacking routine against
them at his leisure, and then use the hacked passwords to gain illicit access to the
database.

Additionally, even if this option is enabled, the client and server must exchange
metaschema information, including table and field information, before validating the
username/password combination. A network packet sniffer could be used to record
these pre-authentication exchanges and extract valuable information from the
downloaded metaschema data.

Usernames and Passwords
As we mentioned earlier, a valid username and password is the only way to gain
access to a secured database. As such, we must ensure that this gate is as secure as
possible.

One of the biggest violations of this rule is the use of generic user accounts. There
should not be one “SecAdmin” account with the password shared by two users but
rather users “KOUP” and “JACM” should be assigned the role of security administrator.
This way, with the help of tools such as OpenEdge Auditing, there can be no
ambiguity as to who did what.

Second, this access path must strengthened by the enforcement of complex
passwords and password aging. Since OpenEdge does not yet provide this
functionality, it is up to the programmer to include it in his application. When a user
logs in, the login program should validate the password age and if necessary force the
user to change it. Additionally, a nightly batch job can be run to change the
password of users who have not used the system in x days.

Solutions
Combining the data access issues from the previous section to the username and
password challenges in this section, the following solution is proposed for securing
your existing OpenEdge application:

1. DO NOT enable DB Options – Disable Blank User-ID

2. DO enable DB Options – Runtime Security (as of 10.1A)

3. DO enable Security - Disable Blank User-ID

4. DO assign at least two users to the role of security administrator

5. DO NOT allow generic accounts

6. DO enforce complex passwords and password aging via your application

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 11 of 20

This solution simply states that if a user provides a valid username and password, he
should have complete access to all data in the database. At first, this may sound
counter-intuitive and certainly counter to the discussions in the past two sections!
The reply is simple: if we cannot effectively assign access rights at the table and field
level then the simplest solution is to give complete access to all valid users and
secure the manner in which they can access the data. I.e. we secure the next outer
layer.

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 12 of 20

ENVIRONMENT
In the introduction, I mentioned that for every lock there is a key, and if there is a
key, someone will figure out a way to pick the lock. With that said, you nonetheless
should not be making the potential hacker’s life easier by leaving break-in tools lying
around. Remember, your goal is to protect the data.

Development Environment
A data thief does not need to break into your secure production environment if you
copy all the data every Sunday to refresh your entirely unsecured development
environment. The would-be hacker is not necessarily looking to corrupt your data by
randomly modifying or deleting rows in tables. More likely, that would-be hacker is
an underpaid employee who was offered a significant sum of money to acquire your
customer list or price list or worse, the employee might access financial information in
order to provide insider information to a trader. That employee may not have access
to that data in production but he may very well have full access to a test, train or
development environment.

At the very least, test environment refreshes from production should be scrambled:
change customer names; change the prices and costs of items; mangle financial
information. If possible, create a standard data set for testing and use only that for
your non-production environments.

Development Licenses
Progress provides three levels of database access based on the license keys in the
progress.cfg configuration file found in the installation directory:

1. Runtime: Only pre-compiled dot-r programs can be executed

2. Query: Ad-hoc queries that do not modify the database can be compiled on
the fly but only pre-compiled dot-r programs can modify data.

3. Full Dev: The user can execute ad-hoc queries that can read, modify, create or
delete data.

There is one simple rule with regards to these licenses:

“Users with access to full development licenses must not be able to access production
data with those licenses”

Often, when Progress software is installed, all the keys are entered during the same
installation process. As a result, the entire user base ends up running with full
development capabilities. In a secure environment, the full development license
should be installed separately and read access to that configuration file should be
limited to authorized users.

DBAUTHKEY
As mentioned earlier, DBAUTHKEY restricts which dot-r programs can be executed
against which physical database. By using DBAUTHKEY, dot-r programs compiled

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 13 of 20

against an unsecured test database cannot be executed against a production
database.

Unfortunately, DBAUTHKEY is not foolproof and a determined hacker can circumvent
DBAUTHKEY security. However, this is not a reason not to use it. Remember, your
goal is to make illicit access to your data more difficult.

PROPATH
An unsecured PROPATH is one of the simplest yet most overlooked security holes I
have ever seen. Very simply, the PROPATH lays the foundation upon which RUN
commands within the ABL find the programs they are trying to run. If the PROPATH
is not secure, or if it contains a “.”, it allows hackers to insert their own code in the
place of the original application code simply by using the same name and directory
structure as the original.

Locking down the PROPATH also discourages another common practice: developer
testing in production. A developer must implement a fix but cannot reproduce the
problem in production. As a result, he modifies his personal PROPATH in production
to run his test version of the program as opposed to the original. The typical result:
rather than fixing the original problem, the tested program caused more data
corruption.

Additionally, lock down the directories and files found in the PROPATH. These
directories contain all the dot-r programs and should be read-only for normal runtime
users. If you lock down the PROPATH but allow a user to insert a rogue program in a
valid PROPATH directory worse damage can be inflicted on the database because all
users will run the new rogue program found somewhere in the global PROPATH
directories.

AppServer
The AppServer is just another OpenEdge ABL client that can run programs on the
behalf of a remote user. Literally, the user connects to the AppServer and says
“Please run this program”. The would-be hacker could drop a program somewhere on
the server running the AppServer and request that the AppServer run it. Now if the
AppServer happens to have a higher security access than the user (ex.: if the
AppServer is running as root) then that AppServer will happily execute the rogue
program on behalf of the user!

To prevent this, we of course should limit the hacker’s ability to drop programs where
the AppServer can see them. However, we can also limit what the AppServer is
permitted to run through the SESSION:EXPORT function. This function permits the
administrator to limit what programs the AppServer is allowed to execute.

$DLC
The root (or administrator) account is required to install OpenEdge products and by
default access to most of its contents is open to all. There is no reason for this except
to simplify the life of the data thief.

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 14 of 20

First, as mentioned earlier, install full development licenses separately and lock down
read access to the configuration file containing the full development license.

Second, in all $DLC directories, lock down read access to procedure libraries to which
the normal runtime user does not need access. For example, the procedure libraries
containing the Progress Editor and Data Dictionary are not required by normal users.
Lock down access to these files.

Also lock down execution rights on Progress tools in $DLC/bin like _mprosrv (start a
database), _mprshut (stop a database), _proutil (database general utility) and _rfutil
(roll-forward general utility).

Finally, lock down all the files in $DLC/properties. These contain startup information
used by the AdminServer, Appservers, OpenEdge Management and other OpenEdge
processes. Only members of the DBA group should be able to modify these files.

Starting Server Processes
Since Progress was installed using the root account, it is often considered the default
to actually run Progress server processes using root. This should not be the case.
The root account should be limited to running operating system processes only. For
the database server, AdminServer and AppServers, separate service accounts should
be created. Note that these should be no-login accounts. We do not want to create
generic accounts to which multiple users have the password. Instead, tools like “su”
or “sudo” can be used to start processes using the credentials of the service account.

This is especially true for the AdminServer as by default it will spawn it’s children
(AppServer, WebSpeed Transaction Server, NameServer, etc) using the same
account. If OpenEdge Management is installed, it runs in the same JVM as the
AdminServer, effectively giving the OpenEdge Management Administrator full root
access to the server. The same is true with WebSpeed. Anyone accessing the
WebSpeed Workshop page can potentially have access to a UNIX command line with
root authority.

Finally, do not forget other batch processes that may be running on your system. For
example, you may be running scheduling software for your nightly batches.

Shell Access
Though it should go without saying, I feel compelled to state that no user should have
shell UNIX access. The user’s startup script should immediately send them to the
application. Additionally, the “exec” UNIX command should be used to start the
application. Without it, a fast user can CTRL-C during the script execution and end up
at the command line.

Also consider using one of the available restricted UNIX shells. In most cases the use
of a restricted shell should not affect your application and if by some chance the user
is able to shell out to UNIX they will be severely limited.

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 15 of 20

Solutions
Once again, your responsibility is to make the hacker’s job more difficult by putting as
many barriers in his way as possible. Additionally, you don’t want to help him by
leaving tools lying around:

1. DO NOT refresh development data from production data

2. DO NOT allow users with full development licenses to access production data

3. DO consider deploying DBAUTHKEY

4. DO remove the “.” from the PROPATH

5. DO remove lock down access to files and utilities in the Progress installation
directory.

6. DO NOT use root to start your database server and/or batch processes

7. DO NOT give users shell access

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 16 of 20

FILESYSTEM
In a client-server environment, users typically do not have access to the server
containing the database, much less the filesystem. However, there are still a
significant percentage of current OpenEdge deployments that are entirely host-based,
with a character interface (ChUI) and a shared memory connection to the database.
In these types of deployments, the filesystems containing the database, the
application code and the various support files must be protected.

Specifically, users should not have write access to any of the files nor directories
containing the OpenEdge installation, the application code nor to the database files
themselves. For example, only root should have write access to the $DLC directory,
with the possible exception of $DLC/properties. Similarly, only the deployment group
should be allowed to write into the application code directories.

The SetUID Bit
The often misunderstood setuid bit is a UNIX-only attribute which allows the user who
is executing a program to run that program with the security level of the owner of
the program. In the case of OpenEdge, the _progres client executable belongs to root
therefore all ABL ChUI users initiate their sessions as root. However, once the
initialization process is complete, the _progres executable automatically downgrades
its security level to that of the user.

Why is it designed that way? Simply, if correctly deployed, users should not have the
right to modify physical database files and shared memory segments. This is to
prevent an unauthorized user from accidentally or intentionally deleting or physically
corrupting the database. However, in order to allow the _progres client executable to
connect to the database nonetheless, it starts its session as the super-user. The
super-user has full access to all files and is able to open the database files and shared
memory segments. Once this is done, it downgrades itself but retains the open
handles to the db files and shared memory.

Securing the Database
At the very least, all database files and directories should belong to a service account
(ex.: prodba) and only that account should be allowed to read or write into those
directories and files. As explained above, users who connect to the database at
startup will not have any problems making a shared-memory connection. However,
users who attempt to connect to the database after the session startup will face a
permission-denied error and be forced to connect via client-server.

Note that both the files and directories must be write-protected. Though counter-
intuitive, file modification is controlled by permissions on that file but file creation and
deletion are controlled by permissions on the parent directory. In other words, it is
entirely legal to delete a file that you cannot modify if you have write access to the
directory without having write access to the file itself.

Many people will only secure the write permissions of the database files without
blocking read access. This allows unauthorized users the ability to copy the database
to a new location where all files now belong to them. From there, it is a simple task

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 17 of 20

to edit parts of the database using a hexadecimal editor and disable all or part of the
internal OpenEdge security.

We already mentioned securing the files and directories containing the application
code, the Progress installation directory and now the database extents directories.
You should also secure any directory containing parameter files (PF) or scripts.
Changes to these files could cause an authorized user to run commands he never
intended to run.

Solutions
1. DO remove all read, write and execute permissions on all the database extent

files and directories

2. DO remove write access on all the application code directories

3. DO remove write access on all complimentary files and directories (ex.: PF
files)

4. DO NOT distribute source code to the production servers. Generate r-code on
your development server and distribute only the dot-r’s to the production
server.

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 18 of 20

SERVER
As we mentioned earlier, in a client-server environment, the user should have no
access whatsoever to the production database server except through the pre-defined
ABL, SQL and AppServer ports. Local users should only be able to access the server
through a terminal session. Everything else should be closed unless otherwise
needed for a specific and well-defined purpose. Unfortunately, this is not usually the
case. Type the command “netstat –a | grep LISTEN” on your UNIX or Windows
server. All those listeners are awaiting connections from the outside.

Additionally, by default most servers are accessed via non-encrypted utilities such as
telnet and ftp. It is a relatively simple task to sniff for plain-text packets on a
network and extract a user’s username and password.

Finally, many servers are running file-sharing utilities like Samba. While Samba
might seem simple to install and get up and running, it is by default fairly non-secure.
A simple example of this is where administrators install Samba so that users can
generate reports to text files and then open those text files via Windows Explorer.
They therefore give all users access to their home directories on the UNIX box.
However, this also gives the user the ability to modify his .profile startup script and
give himself shell access.

If not configured properly, Samba access can also give a hacker the ability to drop
rogue dot-r programs into PROPATH directories to which he normally would not have
access. Or he may be able to physically access the database files.

Solutions
1. DO stop all network services that are not required.

2. DO replace all standard utilities by their encrypted versions

3. DO use file sharing tools like Samba with caution and test extensively

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 19 of 20

NETWORK
The outermost circle of defense is the network. By correctly configuring network
access, the system and network administrators can completely control access to the
server containing the database files and manager. The easiest way to do this is
through the implementation of Virtual Local Networks, or VLANs.

VLANs allow the network administrator to segregate network traffic destined for the
server from all other network traffic. Using enterprise firewall software like
Checkpoint, he can also specify which computers on which other VLANs can access
network resources on the database server VLAN. For example, the network can be
configures such that the database servers are in VLAN 10.10.10.x; all finance users
are in VLAN 10.10.20.x; and all warehouse workers are on VLAN 10.10.30.x. Via the
firewall software, the administrator can specify that workstations in the 10.10.20.x
VLAN can access the 10.10.10.x VLAN and deny access to workstations in the
10.10.30.x VLAN. Note that this does not prevent unauthorized use of a workstation
in Finance’s 10.10.20.x VLAN. If the Vice-President of Finance goes home in the
evening and leaves his workstation unlocked, the janitor could potentially have access
to all the company’s financial data!

Open network ports can also give a potential intruder access to try and hack his way
into the database. Normal connection attempts via the _progres executable are
handled and secured by normal OpenEdge security features. Conversely, network
access directly to a database server’s or broker’s TCP/IP port cannot be controlled so
easily. This hacked connection will likely not follow the standard handshake protocol
and thus will not necessarily be disconnected. It cannot be concluded with certainty
that useful information could be extracted from the database in this way but it still
remains a possibility. All that is required is a hacker with the right tools and
motivation to try.

Additionally, as we mentioned earlier, workstations or servers with full development
Progress licenses should not have access to the production database servers. The
easiest way to accomplish this is again through VLAN segregation. If a person serves
the dual role of development and support, that person could easily access production
data through a separate computer or via some Citrix-like remote desktop software.
Considering that a more-than-adequate workstation costs less than a thousand
dollars, there is really no argument against installing two workstations to support the
user’s two roles.

Solutions
1. DO segregate and control access to database servers via VLANs

2. DO NOT allow workstations or servers with full development access to
production database servers.

Deploying a Progress Application in a Secure Environment Paul Koufalis

December, 2015 Page 20 of 20

USERS
It’s sad to say, but your very own employees are most likely the biggest potential
security hole in your organization. No matter how much you’re paying them,
somewhere there is someone who could use an extra few thousand dollars. And if all
they have to do earn that money is extract a little data from your databases, what’s
going to stop them? But even if all your employees are completely honest and
trustworthy, there is still the very real chance that human error will somehow corrupt
your data or make it available to the wrong people. The perfect example: a
developer who has multiple windows open on his desktop, some in production and
some in development. It is not difficult to believe that this developer might
accidentally run something in production when he meant to run it in development.

The first solution to this problem is to segregate the various support and deployment
roles in your organization. The person who fixes a problem should be different from
the person who tests the fix and still different from the person who deploys the fix in
production. This way, there are multiple people involved. If the intent is malicious,
more than one person must be persuaded to risk his career for a sum of money. On
the other hand, if the intent is honest, there is more chance that an error will be
caught if multiple people are involved in its deployment.

And of course there is the example mentioned above in the network section: users
who do not lock their workstations. It only takes a minute or two to sit at a desk and
print or email sensitive data to which a thief would not normally have access. What
makes this issue most frustrating is that there is no policy easier to implement yet
more difficult to enforce!

 ©2015 White Star Software

	Introduction
	Objectives and Goals
	Audience
	Understanding the Layers
	Data
	Database
	Security Administrator
	Admin – Security – Disable Blank User-ID
	Admin – DB Options – Disable Blank User-ID
	Usernames and Passwords
	Solutions

	Environment
	Development Environment
	Development Licenses
	DBAUTHKEY
	PROPATH
	AppServer
	$DLC
	Starting Server Processes
	Shell Access
	Solutions

	Filesystem
	The SetUID Bit
	Securing the Database
	Solutions

	Server
	Solutions

	Network
	Solutions

	Users

